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Abstract 26 

Calibrating watershed-scale hydrologic models remains a critical but challenging step in the 27 

modeling process. The Soil and Water Assessment Tool (SWAT) is one example of a widely 28 

used watershed-scale hydrologic model that requires calibration. The calibration algorithms 29 

currently available to SWAT modelers through freely available and open source software, 30 

however, are limited and do not include many multi-objective genetic algorithms (MOGAs). The 31 

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) has been shown to be an effective and 32 

efficient MOGA calibration algorithm for a wide variety of applications including for SWAT 33 

model calibration. Therefore, the objective of this study was to create an open source software 34 

library for multi-objective calibration of SWAT models using NSGA-II. The design and 35 

implementation of the library are presented, followed by a demonstration of the library through a 36 

test case for the Upper Neuse Watershed in North Carolina, USA using six objective functions in 37 

the model calibration.  38 

 39 

Keywords: Multi-Objective Calibration; Genetic Algorithms; Watershed Modeling; SWAT; 40 

NSGA-II 41 

 42 

 Software availability: The software is available free and open source on Github: 43 

https://github.com/mehmetbercan/NSGA-II_Python_for_SWAT_model.  44 
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1. Introduction 45 

The Soil and Water Assessment Tool (SWAT) is a widely used watershed model with 46 

numerous applications around the world for water quantity and quality simulations (e.g., Cools et 47 

al., 2011; Gassman et al., 2007; Liu et al., 2013).  It can be classified as a semi-distributed 48 

conceptual watershed model that is capable of running on a daily or sub-daily time step over long 49 

time periods. SWAT is able to simulate large watersheds with different management scenarios 50 

where the impact on water supply and non-point source pollution can be assessed (Arnold et al., 51 

1998). For SWAT and other similar watershed models, there are often hundreds of modeling 52 

units in a model for a single watershed and dozens of model parameters used to describe 53 

properties within the model. One of the modeler’s most important and difficult tasks is to 54 

calibrate these model parameters so that the model’s output matches observational data such as 55 

streamflow observations collected within the watershed. 56 

Many algorithms and tools have been developed and applied for calibrating SWAT models. 57 

SWAT-CUP represents one widely used tool in the SWAT community for applying calibration 58 

algorithms to SWAT models. SWAT-CUP includes different calibration algorithms, as well as 59 

routines for sensitivity analysis, validation, and uncertainty analysis of SWAT models 60 

(Abbaspour et al., 2007). There are other procedures and algorithms developed in the scientific 61 

community for calibration that have not yet been included in SWAT-CUP, but that would benefit 62 

SWAT modelers. For example, SWAT-CUP does not include multi-objective calibration 63 

approaches, nor does it include genetic algorithm calibration approaches (Abbaspour, 2013). 64 

SWAT modelers, however, could benefit from these calibration procedures, especially for large 65 

watersheds where multiple streamflow observations are available (Arnold et al., 1999; Bekele 66 

and Nicklow, 2007; Kirsch et al., 2002; Santhi et al., 2001; White and Chaubey, 2005). 67 
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Genetic Algorithms (GAs) offer the ability to effectively solve highly non-linear 68 

optimization problems and have been used for a variety of water resources challenges. Being an 69 

evolutionary algorithm, GAs use principles of genetics and natural selection for optimization 70 

(Haupt and Haupt, 2004). They are well suited for hydrologic models, which usually cannot be 71 

adequately calibrated by gradient-based calibration algorithms. The objective function for each 72 

solution in a GA can be evaluated in parallel computations, which provide computational 73 

advantages (Zhang et al., 2013, 2012a). The heuristic search procedure of GAs, relying on 74 

stochastic search rules, increases the probability of finding non-unique solutions. Previous 75 

studies have shown that these properties of GAs allow them to converge to optimal solutions for 76 

a variety of problems (Winston et al., 2003) including the challenge of calibrating watershed-77 

scale hydrologic models (Arabi et al., 2006; Nicklow and Muleta, 2001). 78 

Multi-objective calibration algorithms have been shown to increase model performance for 79 

hydrologic models of large watersheds (Andersen et al., 2001).  In contrast to the more widely 80 

used single-objective calibration algorithms available to SWAT users now in tools like SWAT-81 

CUP, multiple-objective calibration better constrains the calibration process, resulting in a 82 

calibrated model that better matches the physical conditions within the watershed (Niraula et al., 83 

2012). Watershed models may use multiple objective functions in a calibration procedure to 84 

account for potentially competing objectives, even for cases when only a single streamflow 85 

station is available for calibration (e.g., two objectives might be to match peak flows and 86 

maintain annual water volume balance between the model and observations). They can also 87 

allow modelers to take advantage of multiple observational time series (e.g., streamflow at two 88 

or more locations in the watershed or streamflow and soil moisture observations at two or more 89 

locations in the watershed). 90 
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There is a class of calibration routines that combine the benefits of both multi-objective and 91 

genetic algorithm calibration approaches: the so called multi-objective genetic algorithms 92 

(MOGAs). One of the most popular MOGAs is the Non-Dominated Sorting Genetic Algorithm 93 

II (NSGA-II). NSGA-II is a fast and efficient population-based optimization technique that can 94 

be parallelized. The algorithm has been shown to be superior to other MOGAs (Deb et al., 2002; 95 

Zitzler et al., 2000) and it has the potential to reduce calibration time through efficiency in the 96 

algorithm itself and its ability to easily be mapped to parallel computing resources (Deb et al., 97 

2002; Tang et al., 2006; Zitzler et al., 2000). The algorithm has significant improvements over 98 

the original NSGA (Srinivas and Deb, 1994) including adding elitism, reducing the complexity 99 

of the non-dominated sorting procedure, and replacing a sharing function with a crowded-100 

comparison function. The NSGA-II algorithm has also been shown to be an effective tool for 101 

watershed model calibration (Bekele and Nicklow, 2007; Confesor and Whittaker, 2007; Hejazi 102 

et al., 2008; Kayastha et al., 2011; Khu and Madsen, 2005; Lu et al., 2014; Shafii and Smedt, 103 

2009; Zhang et al., 2012b).  104 

While NSGA-II has been used for calibrating watershed models, there is no known software 105 

implementation of NSGA-II for calibrating SWAT models that is freely available to the 106 

community. One study did report creating a multi-objective calibration tool for SWAT models 107 

using NSGA-II (Bekele and Nicklow, 2007). However, based on personal communication with 108 

the authors, the source code for this implementation is no longer available. The goal of this work, 109 

therefore, is to create an open source and freely-available NSGA-II software library for SWAT 110 

model calibration. We designed the tool to be library that can be used alone or incorporated into 111 

other software tools. We specifically designed the software to be easily integrated into SWAT-112 

CUP given the popularity of this tool with the SWAT community.  We chose to implement the 113 
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library using the Python programming language because of its growing popularity in the 114 

scientific computing community.  115 

In the remaining sections of this paper, we first describe the algorithm for using NSGA-II 116 

with SWAT for model calibration, then describe the design and implementation of the NSGA-117 

II/SWAT library including compatibility with SWAT-CUP, and finally present a test case 118 

application of the library for calibrating a SWAT model of the Upper Neuse watershed in North 119 

Carolina. As part of this test case application, we compare the results of the NSGA-II calibration 120 

to results from a single-objective calibration to show the improvement obtained by using the 121 

multi-objective NSGA-II algorithm. We have provided the source code for the NSGA-II/SWAT 122 

library as an open source and freely available repository through GitHub: 123 

https://github.com/mehmetbercan/NSGA-II_Python_for_SWAT_model.  124 

 125 

2. The NSGA-II Algorithm and its Integration with SWAT 126 

2.1 Overall Process Flow  127 

In this section we explain the NSGA-II algorithm and how we integrated SWAT calibration 128 

into the algorithm when designing the NSGA-II/SWAT library. Our approach follows the 129 

example of past work using NSGA-II for SWAT calibration (e.g., Bekele and Nicklow, 2007; 130 

Kayastha et al., 2011; Lu et al., 2014), but extends this past work to create a general and reusable 131 

software tool. For further detail on the NSGA-II algorithm itself, readers are referred to Deb et 132 

al. (2002). For convenience, we provide a mapping between NSGA-II and SWAT calibration 133 

terminology in Table 1. 134 

 135 
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Table 1: Description of NSGA-II terms as they relate to SWAT calibration 136 

NSGA-II Term Description for Application to SWAT Calibration 

Solution 
An individual of a population that includes a SWAT calibration 
parameter set and NSGA-II processing data for the parameter set 

Gene The SWAT calibration parameter set that exists in a solution 

Chromosome 
An individual of a gene that represents a single SWAT calibration 
parameter 

Binary Value Binary representation of chromosome in a user defined number of bits 

 137 

A standard NSGA-II process typically begins with a random parent population Pi (Deb et al., 138 

2002). However, here we start with a Latin Hypercube Sampling (LHS) (See Step 1 in Figure 1) 139 

because better results have been achieved for SWAT models using this approach (Bekele and 140 

Nicklow, 2007). The LHS operator is executed first to create an initial combined population 141 

(Ri=0). We use the subscription “i” to represent a generation (iteration) number. The initial 142 

combined population must be at least twice as large the population size for reasons that will 143 

become clearer in forthcoming steps of the algorithm. 144 

 145 
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 146 

Figure 1: The NSGA-II algorithm for SWAT model calibration.  147 

 148 

Each solution in the initial combined population (Ri=0) is considered to be a SWAT 149 

calibration parameter set. The SWAT input files are edited to include this solution, the model is 150 

executed, and the objective functions are evaluated using observational data and the SWAT 151 

model output data (See Steps 2-4 in Figure 1). These model runs can be performed in parallel for 152 

each solution within the population. Once this process has been completed, the solutions within 153 

the population (Ri) are ranked using the results of the objective function evaluation process and a 154 

non-dominating sorting approach (See Step 5 in Figure 1). Details of this non-dominating sorting 155 

approach are provided in Section 2.2.1. 156 

The best performing solutions from Ri as determined by the non-dominating sorting 157 

approach are used to form the parent population (Pi). The number of solutions in the parent 158 

population is determined by the user defined population size. In the case of ties where multiple 159 

solutions exist with the exact same ranking at the cut-off point for creating Pi, a crowded distance 160 
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sorting operator is used to break the tie (See Step 6 in Figure 1). This operator is explained in 161 

Section 2.2.2. In short, the solutions with the larger crowding distance value, which acts as a 162 

dummy fitness in the sorting operator, are chosen to fill the remaining spots in Pi. Using the 163 

parent population, a new child population (Ci+=1) is determined through a selection, crossover 164 

and mutation operator (See Step 7 in Figure 1), which is explained in Section 2.2.3. This entire 165 

procedure is repeated until the termination criteria are met.  166 

 167 

2.2 NSGA-II Operators 168 

We provide in this section details for the specific operators used in the NSGA-II algorithm 169 

that are mentioned in the previous section.  170 

2.2.1 Non-Dominated Sorting 171 

The non-dominated sorting operator is a process of ranking solutions that exist in the 172 

combined population (Ri) (Deb et al., 2002; Srinivas and Deb, 1994). In this operator, the 173 

objective functions are evaluated for given solutions to determine domination. Domination is 174 

established when the objective function evaluations of a solution outperform all other solutions 175 

with the same rank. The process terminates when all members of the combined population (Ri) 176 

have been assigned a rank. 177 

2.2.2 Crowding Distance Sorting 178 

Crowding distance sorting is used to break ties for solutions with the same rank at the cut off 179 

point for being included in the parent population (Pi) (Deb et al., 2002). First, the solutions in 180 

that rank are sorted based on the value of an objective function. Then, a solution is selected and 181 

the distance between that solution and each of the adjacent solutions is calculated. These 182 
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distances are normalized by dividing by the distance between the maximum and minimum value 183 

of the objective function for all solutions. Finally, crowding distance for the solution is 184 

calculated as the sum of the normalized distance for the adjacent solutions.  185 

This process is repeated for all objective functions and the final crowding distance value for 186 

a solution is the summation of crowding distances calculated for all objective functions. It is then 187 

repeated for all solutions within the parent population. One exception is the maximum and 188 

minimum solutions in a rank. Because they do not have adjacent solutions on both sides, they are 189 

typically assigned an arbitrarily large distance value. When breaking ties, the preference is to 190 

select solutions with a large crowding distance value, which means the solution has more distant 191 

neighbors and selecting this solution helps to protect the diversity of the population.  192 

2.2.3 Selection, Crossover, and Mutation 193 

Selection is a process that chooses solutions from a parent population (Pi+=1) that go into a 194 

child population (Ci+=1) based on non-dominated and crowding distance sorting values. It starts 195 

by randomly selecting two solutions from Pi+=1. Then, it selects the solution that has the smaller 196 

rank. If two solutions have the same rank from non-dominated sorting, it selects the solution that 197 

has the greater crowding distance value. This process continues until all spots in Ci+=1 are filled.  198 

After completion of the selection process, the crossover process begins. There are two 199 

techniques for the crossover operation: regular crossover and uniform crossover. In regular 200 

crossover, each pair of adjacent solutions from Ci+=1 are progressively chosen. Then, a random 201 

number is generated and compared to a crossover probability. If the random number is smaller 202 

than the crossover probability, crossover occurs where chromosomes between the two solutions 203 

flip for a randomly generated number of chromosomes.  204 
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Uniform crossover is different from regular crossover in that the crossover happens at a 205 

binary level instead of at a solution level. The uniform crossover goes through all binary values 206 

(0 or 1) (of chromosomes) for every evenly indexed Ci+=1 solution. Uniform crossover happens if 207 

a random number is smaller than the crossover probability. In this case, the binary value is 208 

replaced with the binary value from the corresponding next (oddly indexed) Ci+=1 solution.  209 

Finally, mutation happens through Ci+=1 solutions at a binary level similar to uniform 210 

crossover. The mutation process simply flips the binary value (from 1 to 0, or vice versa) if a 211 

random number is smaller than the mutation probability.  212 

 213 

3. Design and Implementation of the NSGA-II/SWAT Calibration Library 214 

The NSGA-II/SWAT calibration library implements the algorithm summarized in the prior 215 

section where NSGA-II was used for SWAT model calibration. The library was designed as a 216 

general, object-oriented application programming interface (API) library and implemented in the 217 

Python programing language because it is open source and widely used in scientific 218 

communities. The library was tested against an established NSGA-II implementation written in 219 

the C programing language (Deb et al., 2002) to ensure that it is able to reproduce the same 220 

results. The library was designed to be compatible with SWAT-CUP (Abbaspour, 2013; 221 

Abbaspour et al., 2007), which is a widely used tool for calibration of SWAT models, as 222 

described later in this section.  223 

3.1 Class Diagram 224 

The NSGA-II/SWAT calibration library includes one main class called nsga2 and two utility 225 

classes for lower level NSGA-II and SWAT operations (Figure 2). The nsga2 class is heart of 226 

NSGA-II algorithm and includes operations such as creating child and parent populations. 227 
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During the initialization phase, the nsga2 class stores inputs such as population size, genes, 228 

chromosomes, and objective functions provided by the user. The nsga2 class offers two options 229 

for creating an initial combined population (Ri=0): (i) using the Latin Hypercube Sampling (LHS) 230 

method and (ii) reading the last generation from a previous calibration. The LHS method is 231 

included because, as stated earlier, it creates a better initial solutions for SWAT models (Bekele 232 

and Nicklow, 2007). On the other hand, reading the last generation from the previous calibration 233 

allows users to continue from previous but ultimately unsuccessful calibrations (for example, if a 234 

calibration fails to complete midway through the calibration process). 235 

 236 

Figure 2: The NSGA-II/SWAT calibration library design.  237 

 238 

The utility classes supplement the calibration process by providing lower-level functionality 239 

specific to the NSGA-II algorithm and for communication with SWAT. The nsga2 class uses 240 

nsga2 utilities to complete methods such as Crossover() or Unicross() required when creating 241 

child populations based on the user’s choice along with Selection() and Mutation() methods. 242 
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Similarly, creating a parent population requires methods like NonDominatedSorting() and  243 

CrowdingDistance(), which are also implemented in the nsga2 utility class. SWAT utilities are 244 

used for objective function calculations using methods like Nash-Sutcliffe() and PercentBias(). 245 

By separating the SWAT-specific functionality into its own class, our design goal was to provide 246 

a pattern that could be repeated when expanding the library to support other hydrologic models.  247 

 248 

3.2 Application for SWAT Calibration 249 

To obtain SWAT model parameter values (genes), the binary values of chromosomes from 250 

solutions of Ci go through a decoding process (decode()). Then, the SWAT model input files are 251 

ready to be edited and executed to calculate objective functions using the SWAT utility class 252 

method, CalculateObjectiveFunctions(). This method first creates a model.in file containing 253 

genes. Then, it executes a batch file called nsga2_mid.cmd that creates the model.out file by 254 

using the model.in file and the SWAT model engine. Finally, the CalculateObjectiveFunctions() 255 

method uses the model.out file and calculates the objective function values by using other SWAT 256 

utility functions such as Nash-Sutcliffe(). This process continues until each solution of Ci is 257 

assigned objective function values. 258 

The nsga2_mid.cmd file is a batch file that executes a series of commands for SWAT 259 

calibration. It uses SWAT executable (swat.exe) and two Python scripts 260 

(SWAT_ParameterEdit.py and Extract_rch.py) in order to create the model.out file. It first runs 261 

SWAT_ParameterEdit.py to change SWAT model parameters based on information in model.in 262 

file. Then, it executes swat.exe to execute the SWAT model using the parameter values included 263 

in the model.in file. Finally, it runs Extract_rch.py to extract SWAT model outputs into 264 

model.out file. The nsga2_mid.cmd file gives flexibility to edit the SWAT side of the calibration 265 
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procedure. To illustrate, inorganic nitrogen flux is the sum of nitrite (NO2) and nitrate (NO3), 266 

which SWAT prints separately. Thus, an intermediate script could be inserted in nsga2_mid.cmd 267 

file to sum these two nitrogen flux terms in model.out file for use in later calibration steps. 268 

 269 

3.3 Compatibility with SWAT-CUP 270 

The NSGA-II/SWAT calibration library was designed so that it can be integrated into 271 

SWAT-CUP. First, we included a Backup folder as a reference to default parameter values as 272 

done in SWAT-CUP. The input/output file and folder names were created following the SWAT-273 

CUP pattern. For example, the SWATtxtInOut folder contains the NSGA-II input and output 274 

folders named NSGA2.IN and NSGA2.OUT. We further followed SWAT-CUP patterns by 275 

creating files with the same structure. The calibration parameter definition file (nsga2_par.def) is 276 

named with the calibration method and followed with _par.def. The structure of nsga2_par.def 277 

file is defined as “X__parameter.ext min max” where the X defines the parameter editing method, 278 

the parameter defines the SWAT parameter, the ext defines the extension of SWAT files, and the 279 

min and max define the minimum and the maximum parameter limits. 280 

In addition to the structure and naming conventions, internal parts of the NSGA-II/SWAT 281 

library also follow the SWAT-CUP pattern. The SWAT_ParameterEdit.py script is equivalent to 282 

SWAT_edit.exe of SWAT-CUP. Both scripts edit SWAT files based on the model.in file created 283 

by the calibration algorithm. Also, the Extract_rch.py script is equivalent to SWAT-CUP’s 284 

extracting script, Extract_rch.exe, which extracts SWAT outputs into model.out file in the 285 

equivalent format. The batch file (nsga2_mid.cmd) mentioned in a prior section (which also 286 

exists in SWAT-CUP) can be used to run extensive SWAT-CUP editing and extracting 287 
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executable files, rather than our parameter editing and extracting scripts. All these properties 288 

were intentionally included to ease the integration of our software library into SWAT-CUP. 289 

Instructions for running NSGA-II through SWAT-CUP are provided on the software’s 290 

GitHub site. The basic procedure is to override the GLUE method and replace it with the NSGA-291 

II method. This is not a long-term solution, but rather a proof-of-concept solution that does not 292 

require altering the SWAT-CUP code-base. Later work can easily extend this proof-of-concept 293 

by allowing SWAT-CUP to include both the NSGA-II method along side the existing methods. 294 

The output generated by NSGA-II conforms to a structure expected by SWAT-CUP, allowing 295 

users to visualize the calibration results like any other calibration routine currently within 296 

SWAT-CUP (Figure 3).  297 

 298 

 299 

Figure 3: Example visualizations of NSGA-II calibration results through SWAT-CUP Graphical 300 

User Interface (GUI).  301 
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 302 

This proof-of-concept could be formalized by modifying SWAT-CUP so that new 303 

calibration routines can be plugged-in without the need to recompile the core SWAT-CUP code. 304 

This plug-in architecture would allow third-party developers to create calibration routines to be 305 

added to the software system more easily. Given the existing capabilities of SWAT-CUP for data 306 

management and visualization, a plug-in architecture could be very powerful for incorporating 307 

the latest calibration methods and providing them to SWAT modelers in a convenient and 308 

familiar. It would save the work of recoding the visualization capabilities already available 309 

through SWAT-CUP and provide a consistent UI experience for end users. Libraries like the 310 

NSGA-II/SWAT library created in this study could be easily structured to follow a standard 311 

required for integrated into SWAT-CUP as a plug-in.  312 

 313 

4. Test Case 314 

The NSGA-II/SWAT library is demonstrated for a test case application using a SWAT 315 

model of the Upper Neuse Watershed in North Carolina. The library is used to calibrate this 316 

model to match streamflow records at three observation sites using two fitness criteria. In the 317 

following subsections, we first briefly discuss how we created a SWAT model for Upper Neuse 318 

watershed, second show how we used our NSGA II library to calibrate the SWAT model, and 319 

third present the results of the calibration. The primary goal of this section is to illustrate how the 320 

library would work for end users interested in applying the library to calibrate a SWAT model. A 321 

secondary goal is to explore how the model calibration resulting from using the NSGA-II/SWAT 322 

library compares to the widely used single-objective calibration strategy. 323 
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4.1 Study Area and Model Preparation 324 

The Upper Neuse watershed (Figure 4) is a level-8 watershed that includes the Flat, Little, 325 

and Eno River watersheds defined by the United States Geological Survey (USGS) codes 326 

02085500, 0208521324 and 02085070, respectively. The study area has a mild climate and 327 

gently rolling topography. The soil type of the watershed is dominated by silty clay and loam, 328 

and the land cover of the watershed is dominated by forest and cultivated crops.  329 

 330 

 331 

Figure 4: Study area: the Upper Neuse Watershed in North Carolina, USA.  332 

 333 

Terrain and land cover data were obtained from the United States Geological Survey 334 

(USGS) National Elevation Dataset (NED) and the 2006 version of the National Land Cover 335 

Database (NLCD). Soil data were obtained from the State Soil Geographic (STATSGO) dataset 336 

provided by the United States Department of Agriculture (USDA). Air temperature, wind speed, 337 

and humidity were obtained from the National Climatic Data Center (NCDC). Precipitation data 338 

was obtained from National Weather Service (NWS) for Nexrad-derived rainfall estimates and 339 
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from NCDC for gauge observed rainfall estimates. These two precipitation estimates were 340 

combined using the approach described by Ercan and Goodall (2012) to create a composite 341 

rainfall dataset for the watershed area. Lastly, daily average streamflow data from the USGS 342 

National Water Information System (NWIS) were downloaded using the Consortium of 343 

Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic 344 

Information System (HIS) (Tarboton et al., 2009). 345 

We divided the watershed into subbasins based on the USGS streamflow station locations 346 

and homogeneity of land characteristics. We used threshold values of 10% for soil, slope, and 347 

land cover to reduce variability within the subbasins. The result was a total of 837 Hydrologic 348 

Response Units (HRUs) for the 93 subbasins in the watershed, which is within the 349 

HRU/subbasin ratio range recommended in SWAT documentation. The commonly used settings 350 

were chosen to configure the model that include the Natural Resources Conservation Service 351 

(NRCS) Curve Number (CN) surface runoff method, the Penman-Monteith potential 352 

evapotranspiration method, and the variable storage channel routing method. The ArcSWAT 353 

software program was used for much of the data preprocessing steps required to create the 354 

model. 355 

4.2 Model Calibration 356 

Streamflow observations at the Flat, Little, and Eno watershed outlets were used in the 357 

calibration. For each outlet, the Nash-Sutcliffe (E) and Percent Bias (PB) statistics were used as 358 

measures of the goodness of fit. Therefore, the calibration used six objective functions (3 sites x 359 

2 fitness). We ran Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 360 

1992) available in SWAT-CUP to find the sensitivity of the flow parameters on streamflow 361 
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prediction. The six most sensitive parameters were chosen for model calibration with the 362 

acceptable ranges and replacement operations shown in Table 2. 363 

 364 

Table 2: Model parameters, their calibrated values, acceptable ranges, and replacement 365 

operations 366 

Parameter Value Range Operation 

Alpha_Bf 0.99 0.01-1.00 Replaced 
Cn2 0.07 ±0.25 % Relative 

Ch_K2 30.59 0.01-150.00 Replaced 

Canmx 9.53 0.01-10.00 Replaced 

Esco 0.94 0.01-1.00 Replaced 

Sol_Aw c -0.06 ±0.25 % Relative 

 367 

We used the following settings for calibrating the Upper Neuse watershed model with 368 

NSGA-II. The LHS size was set to 1000 and crossover probability was set to 0.5 using uniform 369 

crossover. The mutation probability and the seed for the random number generation were set to 370 

0.5. Population size and generation number were set to 80. Since our parameters do not have a 371 

wide range, we used 8 bits for binary crossover and mutations. 372 

Figure 5 provides the pseudo code for the NSGA-II calibration to briefly illustrate how it 373 

was used in the case study. The first line initializes the nsga2 class, which reads in the inputs 374 

from the SWATtxtInOut folder such as PopulationSize, GenerationNumber and Observations. 375 

Then the initial combined population is created followed by the generation loop. In the 376 

generation loop, the code first creates the parent population from the combined population. 377 

Second, it creates the child population using the parent population. Then the child population is 378 

used to run the SWAT model and the model’s output is used to evaluate the objective functions. 379 
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Finally, the parent and child populations are used to create the new combined population for the 380 

next generation. As seen in Figure 4, this library can easily be adapted to other watershed 381 

simulation models by modifying the initialization method of the nsga2 class and the 382 

CalculateObjectiveFunctions() process that exists in the SWAT utility class. 383 

 384 

 385 

Figure 5: The pseudo code for applying the NSGAII/SWAT library for calibrating the test case 386 

SWAT model.  387 

 388 

4.3 Calibration Results 389 

The Pareto front solutions for the case study example are shown in Figure 5. There are six 390 

objective functions for 80 solutions. The objective functions are percent bias (PB) and one minus 391 

Nash-Sutcliffe (1-E) for the stations at the outlets of the Flat, Little and Eno watersheds. The 392 

number of solutions is defined by the population size because all solutions in the final generation 393 

are in the first front (ranking). A zero value on the figure indicates an optimal result while higher 394 

values indicate worse model efficiency. The figure shows the range in performance of the three 395 

watersheds in terms of PB and 1-E values. The values ranged between 0.00 and 0.39 for PB and 396 

between 0.23 and 0.88 for E across the three observation sites.  397 

NSGAII = Nsga2.nsga2(SWATtxtInOut) 
Ri=0 = NSGAII.CreateInitialPopulation() 

Ri=0 = SWATUtilities.CalculateObjectiveFunctions(Ri=0) 

FOR i = 0 to NSGAII.GenerationNumber 

    Pi = NSGAII.CreateParentPopulation(Ri) 

    Ci = NSGAII.CreateChildPopulation(Pi) 

    Ci = SWATUtilities.CalculateObjectiveFunctions(Ci) 

    Ri+1 = Pi + Ci 
END FOR 
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We highlighted the tradeoffs in Figure 6. The thick black line shows the solution selected 398 

with an equal weight for all objective functions, defining the best possible solutions considering 399 

all three objective functions equally. When we put a large weight on the 1-E objectives, we get 400 

the thick dashed grey line that slightly improves on 1-E values, but is worse for PB values. In the 401 

last case with the thick grey line, we selected the lowest 1-E value (best E) for the Eno watershed 402 

ignoring all other criteria. In this case, which represents calibration using a single objective 403 

function, the E value improves for the Eno watershed as expected, but the other objective 404 

functions, including PB for the Eno watershed, are worse compared to the equally weighted 405 

multi-objective case.  406 

 407 

Figure 6: Six dimensional NSGA-II Pareto front.  408 
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 409 

For visualization of tradeoffs, we displayed the same Pareto front in Figure 6 using two 410 

dimensional graphs. Because of difficulties of showing all six objective functions on a single 411 

graph, we averaged fitness values over the Flat, Little and Eno watershed outlets in Figure 7b. 412 

Significant tradeoffs are illustrated between E and PB objective functions for the three outlets 413 

(Figure 7a) as was also shown by Bekele and Nicklow (2007). This illustrates the utility of a 414 

multi-objective calibration of SWAT models by attempting to balance multiple competing 415 

objectives when selecting optimal parameter sets.  416 

The equally weighted objective functions are also highlighted in Figure 7. Better PB and 1-E 417 

values exist on Figure 7a. However, these values are connected to other objective functions that 418 

are much worse (e.g. the grey dashed and solid lines in Figure 6). Figure 7a indicates similar 419 

responses between the three watersheds, but a more significant relationship between the Flat and 420 

Little watersheds. This is expected as all the watersheds are in the same region and the Eno 421 

watershed is partially urbanized whereas the Flat and Little are not. 422 

 423 

 424 

Figure 7: (a) NSGA-II Pareto front with (b) results averaged across the three watersheds. 425 
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 426 

Table 2 shows the parameter set values for the chosen solution (objective functions are 427 

equally weighted). We ran the SWAT model based on this solution and prepared the model 428 

statistics against observations (Table 3). The daily and monthly statistics showed good 429 

agreement between simulated and observed streamflows for each site. PB values are considered 430 

to be “very good” for both the calibration and validation periods except for the Flat River 431 

watershed during the validation period, which is considered to be “good”  (Moriasi et al., 2007). 432 

Monthly E values, on the other hand, were considered to be “good” for the calibration period and 433 

“very good” for the validation period (Moriasi et al., 2007). Lastly, daily statistics showed very 434 

good accuracy compared to previous SWAT studies (Gassman et al., 2007), indicating the 435 

strength of the calibration method. 436 

 437 

Table 3: Results of the fitness values during the calibration and evaluation time periods for the 438 

Flat, Little, and Eno watersheds. 439 

2005-2008a 2009-2012b 

Watershed E Ec R2 R2c PB E Ec R2 R2c PB 

Flat 0.74 0.73 0.75 0.74 0.04 0.62 0.8 0.62 0.82 -0.13 

Little 0.75 0.72 0.76 0.73 0.08 0.61 0.8 0.61 0.81 -0.09 

Eno 0.65 0.65 0.73 0.7 0.02 0.59 0.77 0.64 0.82 -0.11 
a Calibration period 
b Evalutation period 
c Daily predicted and observed values aggregated to monthly 

 440 

The solution with the equally weighted objective functions within the Pareto front is also 441 

illustrated in Figure 8. Similar to Table 3, the Little and Flat watersheds are slightly better at 442 

matching high flows (better E value) compared to the Eno watershed. All of the watersheds tend 443 
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to underestimate streamflow for the calibration period and overestimate streamflow for the 444 

evaluation period. In general, the monthly accumulated streamflow values support the accuracy 445 

of the model as both the calibration and evaluation periods generally fit well to observed 446 

streamflow for all three sites. 447 

 448 

 449 

Figure 8: Comparison of monthly simulated and observed streamflow. 450 

 451 

Finally, we examined the solution with the best E value for Eno watershed (highlighted with 452 

the thick grey line in Figure 6). This case is equivalent to single-objective calibration as we 453 

selected a solution with regard to only one objective function and ignored all other objective 454 

functions. When using this parameter set, the E value for the Eno watershed improved by 0.06 455 

and 0.02 for calibration and validation periods, respectively, compared to the results when using 456 
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the parameter set from the equally weighted multi-objective solution. However, all other 457 

statistics for the calibration and validation period for the three watersheds decreased when using 458 

the parameter set from the single objective optimization. The magnitude of decrease in fitness 459 

values was often similar to the gain in E for the Eno watershed. However, the PB values 460 

deteriorated into an unacceptable model range (Moriasi et al., 2007) where PB values ranged 461 

from 0.31 to 0.38 and 0.15 to 0.16 for calibration and validation periods, respectively, for the 462 

three watersheds. This provides evidence to support the claim that multi-objective calibration 463 

increases confidence in the model's predictive capabilities compared to using a single-objective 464 

calibration routine. 465 

 466 

5. Conclusion 467 

The powerful Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is a popular multi-468 

objective optimization genetic algorithm (MOGA) that has been shown to be effective for 469 

calibrating watershed models including SWAT. Because there is no known open source and 470 

freely-available software for linking NSGA-II with SWAT for model calibration, we created an 471 

open source NSGA-II/SWAT library using the Python programming language. We designed the 472 

library to be used either as a standalone tool for those experienced with Python, or as a library 473 

that can be incorporated by developers into existing third-party Graphical User Interface (GUI) 474 

software tools. In particular, a design goal was to allow for easy integration of the NSGA-475 

II/SWAT library with the widely used SWAT-CUP program that includes many algorithms for 476 

calibrating SWAT models, but currently does not include the NSGA-II algorithm.  477 

We demonstrated how the NSGA-II/SWAT library could be used through a test case 478 

application for calibrating a SWAT model of the Upper Neuse Watershed in North Carolina. The 479 
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test case considered six objective functions: maximize Nash-Sutcliffe (E) and minimize Percent 480 

Bias (PB) as the fitness coefficients for three streamflow stations located in the watershed. Six 481 

model parameters were used in the calibration based on results obtained from using the GLUE 482 

sensitivity analysis procedure. Results from applying the NSGA-II/SWAT library to this test 483 

case showed large tradeoffs between fitness coefficients in the study watershed as illustrated in 484 

the Pareto front. In general, the Eno watershed had lower E values compare to the other two 485 

watersheds, and we suspect that this is due to urbanization within the Eno watershed that is not 486 

present in the other two watersheds. 487 

We chose the optimal parameter set from the Pareto front when weighting all objective 488 

functions equally and used this parameter set to create the calibrated SWAT model. Results from 489 

running the calibrated SWAT model during the time period used to calibrate the model were E 490 

values ranging between 0.65 and 0.75 and PB values ranging between 0.02 and 0.08 for the three 491 

streamflow stations used for calibration. The results from running the model during an 492 

independent evaluation period not used for calibrating the model showed E values ranging 493 

between 0.59 and 0.62 and PB values ranging between -0.13 and -0.09. All results for the 494 

calibration and evaluation periods were considered to have satisfactory performance (Moriasi et 495 

al., 2007) and improved results obtained from executing the SWAT model using an optimal 496 

parameter set generated when considering only one of the six objective functions. Therefore, the 497 

model calibration resulting from using the NSGA-II/SWAT library resulted in a well-calibrated 498 

SWAT model that increases our confidence in the model's predictive capabilities compared to 499 

the more common approach of using a single objective function. 500 

The NSGA-II/SWAT tool was written to allow for easy expansion to include other 501 

calibration algorithms and interfaces for other hydrological and environmental models that might 502 
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require multi-objective calibration. By having the source code in a public repository, the code 503 

can be easily obtained and extended by others to include these enhancements. Furthermore, the 504 

software was designed in a way so that it can be easily incorporated into front-end Graphical 505 

User Interface (GUI) software tools, most notably SWAT-CUP. A proof-of-concept for 506 

incorporating the library into SWAT-CUP was shown that leverages the existing data 507 

visualization capabilities already available through SWAT-CUP and provides a new and 508 

powerful calibration routine to SWAT-CUP users. Future work could formalize the proof-of-509 

concept by extending SWAT-CUP to accept 3rd party calibration routines as plug-ins. This would 510 

encourage adoption of new calibration algorithms more quickly and easily into the community-511 

supported and widely used SWAT-CUP. 512 
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